mój rynek

mój rynek

Menu

Get your dropdown menu: profilki

wtorek, 21 czerwca 2016

Praktyczne próby wykorzystania kwantowej informatyki

Zespół naukowców z Google, Uniwersytetu Kraju Basków, University of California i Ikerbasque - Baskijskiej Fundacji Nauki, opracował sposób na połączenie dwóch wiodących pomysłów na stworzenie komputera kwantowego w jednej maszynie.

Naukowcy naprawdę chcieliby dowiedzieć się, jak zbudować prawdziwy komputer kwantowy, który pozwoli na rozwiązywanie problemów nierozwiązywalnych dla maszyn konwencjonalnych. Ale niestety, idea takiego komputera funkcjonuje głównie na gruncie teoretycznym.



Aby przenieść niektóre z pomysłów z teorii do rzeczywistości, naukowcy zbudowali rzeczywistą maszynę – jej stworzenie oparte jest na dwóch najważniejszych podejściach do budowy komputera kwantowego.

Pierwsze podejście opiera się na modelu bram, w którym qubity są połączone ze sobą w celu utworzenia prymitywnego obwodu symulującego logiczną bramkę kwantową; każda bramka logiczna jest w stanie wykonać jeden konkretny rodzaj działania. Każda z bramek logicznych musi być zaprogramowana z wyprzedzeniem do wykonywania owych zadań.

Przy drugim podejściu qubity nie oddziałują ze sobą, lecz są utrzymywane w stanie podstawowym, gdzie następnie mogą ewoluować do systemu zdolnego do rozwiązywania danego problemu. Rezultatem jest tak zwana: maszyna adiabatyczna. Niestety, w tym podejściu nie ma możliwości, iż kiedykolwiek będzie możliwe korzystanie z pełnej mocy obliczeniowej oferowanej przez informatykę kwantową.

Stosując nowe podejście: naukowcy próbowali wykorzystać pozytywne cechy obu podejść tworząc maszynę,  będącą standardowym komputerem kwantowym, a następnie użyli jej do symulacji adiabatycznej maszyny. Wykorzystując 9 qubitów i ponad 1000 bramek logicznych, uzyskali efekt pozwalający na komunikację qubitów, które mogą być włączane i wyłączane w razie potrzeby.

Mechanika kwantowa może przyczynić się do rozwiązywania złożonych problemów w fizyce i chemii, o ile jest możliwe zaprogramowanie jej w urządzeniu fizycznym. W adiabatycznej informatyce kwantowej system powoli ewoluuje od stanu prostej funkcji Hamiltona do końcowego Hamiltonianu kodującego problem. Atrakcyjność tego podejścia polega na połączeniu prostoty i ogólności; w zasadzie każdy problem może być kodowany. W praktyce wnioski są ograniczone przez ograniczoną łączność, dostępność interakcji i zakłócenia.

Brak komentarzy:

Prześlij komentarz